Software and High Performance Computing: Challenges for Research

The Implications of PITAC for High-End Computing

Ken Kennedy
Center for High Performance Software
Rice University

http://www.cs.rice.edu/~ken/Presentations/HPCSoftwareChallenges.pdf
PITAC Charter

- The Committee shall provide an independent assessment of:
 - Progress made in implementing the High-Performance Computing and Communications (HPCC) Program;
 - Progress in designing and implementing the Next Generation Internet initiative;
 - The need to revise the HPCC Program;
 - Balance among components of the HPCC Program;
 - Whether the research and development undertaken pursuant to the HPCC Program is helping to maintain United States leadership in advanced computing and communications technologies and their applications;
 - Other issues as specified by the Director of the Office of Science and Technology.
 - Review of the entire IT investment strategy — is it meeting the nation’s needs
PITAC Membership 97–99

• Co-Chairs:
 — Bill Joy, Sun Microsystems — Ken Kennedy, Rice

• Members:
 — Eric Benhamou, 3Com — Vinton Cerf, MCI
 — Ching-chih Chen, Simmons — David Cooper, LLNL
 — Steve Dorfman, Hughes — David Dorman, PointCast
 — Bob Ewald, SGI — David Farber, Penn
 — Sherri Fuller, U of Washington — Hector Garcia-Molina, Stanford
 — Susan Graham, UC Berkeley — Jim Gray, Microsoft
 — Danny Hillis, Disney, Inc — Robert Kahn, CNRI
 — John Miller, Montana State — David Nagel, AT&T
 — Larry Smarr, UIUC — Joe Thompson, Miss. State
 — Les Vadasz, Intel — Andy Viterbi, Qualcomm
 — Steve Wallach, Centerpoint — Irving Wladawsky-Berger, IBM
Methodology

• Evaluation of Federal Research Investment Portfolio
 — Plans reviewed for each of the major areas:
 - High End Computing and Computation
 - Large Scale Networking
 - Human Centered Computer Systems
 - High Confidence Systems
 - Education, Training, and Human Resources

• Review of Balance in Federal Research Portfolio
 — Fundamental versus Applied
 - Based on our own definition of these terms
 — High-Risk versus Low-Risk
 — Long-Term versus Short-Term
Principal Finding

- Drift Away from Long-Term Fundamental Research
Principal Finding

• Drift Away from Long-Term Fundamental Research
 — Agencies pressed by the growth of IT needs
 - IT R&D budgets have grown steadily but not dramatically
 - IT industry has accounted for over 30 percent of the real GDP growth over the past five years, but gets only 1 out of 75 Federal R&D dollars
 - Problems solved by IT are critical to the nation—engineering design, health and medicine, defense
Principal Finding

- Drift Away from Long-Term Fundamental Research
 - Agencies pressed by the growth of IT needs
 - IT R&D budgets have grown steadily but not dramatically
 - IT industry has accounted for over 30 percent of the real GDP growth over the past five years, but gets only 1 out of 75 Federal R&D dollars
 - Problems solved by IT are critical to the nation—engineering design, health and medicine, defense
 - Most IT R&D agencies are mission-oriented
 - Natural and correct to favor the short-term needs of the mission
Principal Finding

- Drift Away from Long-Term Fundamental Research
 - Agencies pressed by the growth of IT needs
 - IT R&D budgets have grown steadily but not dramatically
 - IT industry has accounted for over 30 percent of the real GDP growth over the past five years, but gets only 1 out of 75 Federal R&D dollars
 - Problems solved by IT are critical to the nation—engineering design, health and medicine, defense
 - Most IT R&D agencies are mission-oriented
 - Natural and correct to favor the short-term needs of the mission

- This Trend Must Be Reversed
 - Continue the flow of ideas to fuel the information economy and society
Remedy

• Increase the Federal IT R&D Investment by 1.4 billion dollars per year
 — Ramp up over five years
 — Focus on increasing fundamental research

• Invest in Key Areas Needing Attention
 — Software
 — Scalable Information Infrastructure
 — High-End Computing
 — Social, Economic, and Workforce Issues

• Develop a Coherent Management Strategy
 — Establish clear organizational responsibilities
 — Diversify modes of support
Software

- **Recommendations**
 - Make fundamental software research an absolute priority
 - Invest in key areas needing attention:
 - Improving programmer productivity
 Ameliorate the shortage of IT professionals
 - Improving reliability and robustness of software
 Critical infrastructure
 - Improving usability through human interface innovations
 - Improving capabilities for information management
 - Make software research a substantive component of every major information technology research initiative.
High-End Computing

- Findings:
 - High-end computing is essential for science and engineering research
 - High-end computing is an enabling element of the United States national security program
 - New applications of high-end computing are ripe for exploration
 - Suppliers of high-end systems suffer from difficult market pressures
 - High-end market not large
 - Innovations are required in high-end systems and application-development software, algorithms, programming methods, component technologies, and computer architecture
 - Scalable parallel architectures not ideal for every application
 - High-end computing capability for the civilian science and engineering community is falling dangerously behind the state of the art
High-End Recommendations

• Research:
 — Fund research into innovative computing technologies and architectures
 — Fund R&D on software for improving the performance of high-end computing
 — Drive high-end computing research by trying to attain a sustained petaops/petaflops on real applications by 2010 through a balance of hardware and software strategies

• Facilities
 — Fund the acquisition of the most powerful high-end computing systems to support science and engineering research

• Management
 — Expand the NSTC CIC High End Computing and Computation (HECC) Working Group’s coordination process to include all major elements of the government’s investment in high-end computing
Software Challenges for HPC
Software Challenges for HPC

• Overcome fundamental limitations of high performance computers
 — Scalability
 — Memory hierarchy performance
Software Challenges for HPC

• Overcome fundamental limitations of high performance computers
 — Scalability
 — Memory hierarchy performance

• Improve productivity of application developers
 — Achieve truly portable performance
 — Develop more powerful programming interfaces
 — Foster effective software component reuse
 — Provide support for real applications
 - Dynamic, adaptive
Software Challenges for HPC

• Overcome fundamental limitations of high performance computers
 – Scalability
 – Memory hierarchy performance

• Improve productivity of application developers
 – Achieve truly portable performance
 – Develop more powerful programming interfaces
 – Foster effective software component reuse
 – Provide support for real applications
 – Dynamic, adaptive

• Respond to the challenges of new HPC platforms
 – Ultrascale computing systems
 – Computational grids
Our Record To Date

• Many good ideas
 — Innovative research activity over the past decade

• Not many useful products
 — MPI, PVM, OpenMP are examples
 — Missing: higher-level languages, machine-independent debuggers
Our Record To Date

• Many good ideas
 — Innovative research activity over the past decade

• Not many useful products
 — MPI, PVM, OpenMP are examples
 — Missing: higher-level languages, machine-independent debuggers

• Why?
 — Pace of architectural change
 - Continuous concentration on the next architectural trick
 — Errors in HPCC investment strategy
 - Not enough software money, Grand Challenges unproductive as generators of software innovation
 — Tech transfer mechanisms flawed
 - High end business is small ➔ limited resources for software
What Should Be Done

• Focus the HPC software research community on long-term, high-risk approaches
 —HPC software grand challenges
What Should Be Done

• Focus the HPC software research community on long-term, high risk approaches
 — HPC software grand challenges

• Foster collaborations that produce software as well as science
 — It should be OK for a collaboration on applications to drive work on software technologies that might not directly affect the application
 - New language and compiler strategies that require years to develop
What Should Be Done

• Focus the HPC software research community on long-term, high risk approaches
 — HPC software grand challenges

• Foster collaborations that produce software as well as science
 — It should be OK for a collaboration on applications to drive work on software technologies that might not directly affect the application
 — New language and compiler strategies that require years to develop

• Invest in technology transfer
 — But do not make this an immediate short-term goal
What Should Be Done

- Focus the HPC software research community on long-term, high risk approaches
 - HPC software grand challenges
- Foster collaborations that produce software as well as science
 - It should be OK for a collaboration on applications to drive work on software technologies that might not directly affect the application
 - New language and compiler strategies that require years to develop
- Invest in technology transfer
 - But do not make this an immediate short-term goal
- Demand good software on procurements and be willing to pay for it!
HPC Software Grand Challenges I

- Automatic Application Tuning for Ultrascale Computation
 - Problem: Application development for:
 - Thousands of processors
 - Deep memory hierarchies (10 levels or more)

- Strategy
 - Language, compiler, and library support
 - Automatic tuning for new architectures
 - Example: Atlas
 - Run-time optimization

- Challenges
 - General automatic tuning strategies and algorithms
 - Producing a taxonomy of tuning parameters for all architectures
 - Minimizing support required from programmer/library developer
HPC Software Grand Challenges II

• Efficient Script-Based Scientific Programming
 – Problem:
 - Productivity of scientific application developers
 - Too much emphasis on low-level programming

• Strategy:
 – Problem-solving environments for HPC
 – Component libraries developed by professionals
 – Scripts used to integrate applications

• Challenges:
 – High performance on a variety of target architectures
 - Global compilation strategies that do not overtax script compilation time
Telescoping Languages

Domain Library
Telescoping Languages

Domain Library

Exhaustive Global Pre-Compiler

Fast Compiler
Telescoping Languages

- Domain Library
- Exhaustive Global Pre-Compiler
- Script
- Script Translator
- Fast Compiler
- Optimized Application
HPC Software Grand Challenges III

• Application Development and Performance Management for Grids
 — Problem:
 - Reliable performance on heterogeneous platforms
 - Varying load
 On computation nodes and on communications links

• Strategy
 — Programs prepared for adaptability
 — Continuous monitoring and reconfiguration during execution

• Challenge:
 — Mapping applications to dynamically changing architectures
 — Determining when to interrupt execution and remap
 - Application monitors
 - Performance estimators
Grid Compilation Architecture

- **Goal:** reliable performance under varying load

GrADS Project (NSF NGS): Berman, Chien, Cooper, Dongarra, Foster, Gannon, Johnsson, Kennedy, Kesselman, Reed, Torczon, Wolski
Summary

• HPC Will Continue to Provide Enormous Challenges for Software
 — Scalability, memory hierarchy, adaptability, portability

• Capitalization of New Ideas Will Take Time
 — Not enough resources for high-end computing software

• Focus Must Remain on the Long Term
 — But intermediate byproducts are useful

• Grand Challenges
 — Automatic performance tuning of applications for HPC platforms
 — Efficient, script-based problem-solving environments
 — Application development for computational grids