CACR Seminar: “Machine Science: Distilling Natural Laws from Experimental Data, From Particle Physics to Computational Biology”
Special CACR seminar, Wednesday April 11, 2012
10 am
100 Powell Booth
Hod Lipson (Cornell)
Machine Science: Distilling Natural Laws from Experimental Data, From Particle Physics to Computational Biology
Can machines discover scientific laws automatically? For centuries, scientists have attempted to identify and document analytical laws that underlie physical phenomena in nature. Despite the prevalence of computing power, the process of finding natural laws and their corresponding equations has resisted automation. This talk will outline a series of recent research projects, starting with self-reflecting robotic systems, and ending with machines that can formulate hypotheses, design experiments, and interpret the results, to discover new scientific laws. While the computer can discover new laws, will we still understand them? Our ability to have insight into science may not keep pace with the rate and complexity of automatically-generated discoveries. Are we entering a post-singularity scientific age, where computers not only discover new science, but now also need to find ways to explain it in a way that humans can understand? We will see examples from psychology to cosmology, from classical physics to modern physics, from big science to small science.
About the speaker: Hod Lipson is an Associate Professor of Mechanical & Aerospace Engineering and Computing & Information Science at Cornell University in Ithaca, NY. He directs the Creative Machines Lab, which focuses on novel ways for automatic design, fabrication and adaptation of virtual and physical machines. He has led work in areas such as evolutionary robotics, multi-material functional rapid prototyping, machine self-replication and programmable self-assembly. Lipson received his Ph.D. from the Technion – Israel Institute of Technology in 1998, and continued to a postdoc at Brandeis University and MIT. His research focuses primarily on biologically-inspired approaches, as they bring new ideas to engineering and new engineering insights into biology. For more information visit http://www.mae.cornell.edu/lipson







